
(c) Copyright 2005 Denim Group, Ltd.

An Introduction to
Application Security in
J2EE Environments
Dan Cornell
Denim Group, Ltd.
www.denimgroup.com

(c) Copyright 2005 Denim Group, Ltd.

Overview

Background
What is Application Security and Why is It
Important?
Specific Reference Examples
J2EE Specific Examples

Access Controls
Input Validation

Resources and Conclusions

(c) Copyright 2005 Denim Group, Ltd.

Background
Denim Group is a San Antonio based software
development firm specializing in:

Custom software development
Business systems integration
Application-level security
J2EE and .NET environments

Management team has breadth of experience working in
and servicing:

Air Force information warfare
DoD software development
Big 4 consulting experience
Fortune 500 to SMB

(c) Copyright 2005 Denim Group, Ltd.

What is Application Security?

Ensuring that custom application code performs
as expected under the entire range of possible
inputs
Software development focus

Traditional InfoSec focuses at the TCP/IP layer
Many traditional InfoSec practitioners are ill-equipped
to work in the application security space

(c) Copyright 2005 Denim Group, Ltd.

Cultural Differences
Traditional InfoSec tends to have a “measure”
culture

Determine what is in place
Audit configurations

Application development tends to have a “build”
culture

Create something that did not exist before
Project-based deadline environment
Certainly the case for custom software development;
also largely the case for systems integration work

(c) Copyright 2005 Denim Group, Ltd.

Why Does AppSec Matter?

Business critical web apps are Internet-facing
New laws and regulations govern how data is
stored and made available

HIPAA
Sarbanes Oxley
GLB

70+% of applications have serious design or
coding flaws

Studies performed by @Stake and Foundstone

(c) Copyright 2005 Denim Group, Ltd.

Top 10 Critical Web App
Vulnerabilities

Unvalidated Parameters
Broken Access Controls
Broken Account and Session Management
Cross-site Scripting Flaws
Buffer Overflows
Command Injection Flaws
Error Handling Problems
Insecure Use of Cryptography
Remote Administration Flaws
Web and Application Server Misconfiguration

** The Open Web Application Security Project www.owasp.org

(c) Copyright 2005 Denim Group, Ltd.

Example Vulnerabilities

Hidden HTML Field Manipulation
Cookie Poisoning
SQL Injection

(c) Copyright 2005 Denim Group, Ltd.

Hidden HTML Field Manipulation

Price information is stored in hidden HTML
field with assigned $ value
Assumption: hidden field won’t be edited
Attacker edits $ value of product in HTML
Attacker submits altered web page with
new “price”
Still widespread in many web stores

(c) Copyright 2005 Denim Group, Ltd.

Price Changes via Hidden HTML
tags

(c) Copyright 2005 Denim Group, Ltd.

Price Changes via Hidden HTML
tags

(c) Copyright 2005 Denim Group, Ltd.

Cookie Poisoning

Browser cookie is used to store user
identity information
Assumption: cookies are set by server
side code and not manipulated by users
Attacker changes cookie and
impersonates another user

(c) Copyright 2005 Denim Group, Ltd.

Cookie Poisoning

(c) Copyright 2005 Denim Group, Ltd.

Cookie Poisoning

(c) Copyright 2005 Denim Group, Ltd.

Cookie Poisoning

(c) Copyright 2005 Denim Group, Ltd.

Cookie Poisoning

(c) Copyright 2005 Denim Group, Ltd.

SQL Injection

SQL statements are created from a
combination of static text and user inputs
Assumption: users will enter well-formed
inputs
Attacker crafts a custom input to hijack
control of the SQL interpreter and execute
arbitrary code

(c) Copyright 2005 Denim Group, Ltd.

An Example: Insecure
Design/Code
try {

string username = request.getParameter(“username”);

string password = request.getParameter(“password”);
string sSql = “SELECT * FROM User WHERE username = ‘” +
username + “’ AND password = ‘” + password + “’”;

Statement stmt = con.createStatement();
ResultSet rs = stmt.ExecuteQuery(sSql);
…

} catch(Exception ex) {}

(c) Copyright 2005 Denim Group, Ltd.

Possible Exploit

Specially crafted input
contains SQL control
characters

(c) Copyright 2005 Denim Group, Ltd.

Possible Exploit
Malicious user sends in a username parameter of:

Dcornell’; DROP DATABASE Ecommerce; --

SQL Executed is:
SELECT * FROM User WHERE username = ‘Dcornell’; DROP

DATABASE Ecommerce; -- AND password = ‘whocares’

Cracker breaks into database and has cleartext access to
usernames and passwords, which may be reused on other sites
Malicious user finds a way to cause an error condition and exploits
the unexpected behavior in some manner

(c) Copyright 2005 Denim Group, Ltd.

An Example: More Secure
Design/Code
try {

string username = request.getParameter(“username”);
string password = request.getParameter(“password”);
string passwordHash = MD5.hash(password);
PreparedStatement stmt = con.prepareStatement(“SELECT *
FROM User WHERE username = ? AND passwordHash = ?);
stmt.setString(1, username);
stmt.setString(2, passwordHash);
ResultSet rs = stmt.ExecuteQuery();
…

} catch(SQLException sqlEx) {
// Actually handle error condition…

]

(c) Copyright 2005 Denim Group, Ltd.

J2EE Specific Examples

Access Control
Authentication
Authorization

Input Validation
Stinger framework
SQL Injection
Cross-Site Scripting (XSS)
Buffer Overflows
Command Injection

(c) Copyright 2005 Denim Group, Ltd.

Access Control

This is where security begins
Responsible for 3 or 4 of the OWASP Top 10

Broken Access Controls
Broken Account and Session Management
Remote Administration Flaws
Web and Application Server Misconfiguration (kind of)

Don’t rely on security through obscurity
See the application server documentation

(c) Copyright 2005 Denim Group, Ltd.

J2EE Artifacts

Setup of users and roles
Deployment descriptors

web.xml
Controls access to servlets and JSP pages

ejb-jar.xml
Controls access to EJBs and EJB methods
Very powerful
Lots of XML

(c) Copyright 2005 Denim Group, Ltd.

web.xml for HTTP Basic Auth
<security-constraint>

<web-resource-collection>
<web-resource-name>Name</web-resource-name>
<url-pattern>/admin/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>Administrator</role-name>
</auth-constraint>

</security-constraint>
…
<login-config>

<auth-method>BASIC</auth-method>
</login-config>
…
<security-role>

<role-name>Administrator</role-name>
</security-role>
…
Rest of web.xml

(c) Copyright 2005 Denim Group, Ltd.

web.xml for Form Auth
<security-constraint>

<web-resource-collection>
<web-resource-name>Name</web-resource-name>
<url-pattern>/admin/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>Administrator</role-name>
</auth-constraint>

</security-constraint>
…
<login-config>

<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>login.jsp</form-login-page>
<form-error-page>login_error.jsp</form-error-page>

</form-login-config>
</login-config>
…
<security-role>

<role-name>Administrator</role-name>
</security-role>
…
Rest of web.xml

(c) Copyright 2005 Denim Group, Ltd.

More on Form Auth

Login form:
Username: j_username
Password: j_password

See the application server documentation

(c) Copyright 2005 Denim Group, Ltd.

JAAS

java.sun.com/products/jaas/
Java Authentication and Authorization Services
Standardized API for leveraging or building
access controls

Most application servers have implementations for
JDBC, LDAP
Can create your own

Can be used to secure access to servlets, JSPs,
EJB methods, etc

(c) Copyright 2005 Denim Group, Ltd.

More JAAS

3 steps
Create a LoginModule

Implement javax.security.auth.spi.LoginModule
initialize, login, commit, abort, logout methods

Create a configuration file
$JAVA_HOME/jre/lib/security/java.security

Make application JAAS aware
Servlets, etc

(c) Copyright 2005 Denim Group, Ltd.

Input Validation

“Root of all evil” in application security
Responsible for 4 of the OWASP Top 10

Unvalidated Parameters
Cross-site Scripting Flaws
Buffer Overflows
Command Injection Flaws

(c) Copyright 2005 Denim Group, Ltd.

J2EE Validation Framework:
Stinger

http://www.owasp.org/software/validation/stinger.html
// get the stinger instance so it knows where to find the rules
// validate this request against the rules

Stinger stinger = Stinger.getInstance(this.getServletConfig());

ErrorList errors = null;
try
{

errors = stinger.validate(request);
}

catch (FatalValidationException e)
{

request.getSession().invalidate();
out.println("Invalid HTTP Request");
out.close();
return;

}

(c) Copyright 2005 Denim Group, Ltd.

J2EE Cross Site Scripting Defense

Escape key HTML characters like < > &
http://www-106.ibm.com/developerworks/security/library/s-csscript/

StringBuffer sbuf = new StringBuffer();

char[] chars = myText.toCharArray();

for (int i = 0; i < chars.length; i++) {
sbuf.append("&#" + (int) chars[i]);

}

(c) Copyright 2005 Denim Group, Ltd.

J2EE SQL Injection
Countermeasures

Use stored procedures:
CallableStatement cs = con.prepareCall("{call SHOW_SUPPLIERS}");
cs.setInt(1, 75);

cs.setString(2, "Colombian");
ResultSet rs = cs.executeQuery();

(c) Copyright 2005 Denim Group, Ltd.

J2EE SQL Injection
Countermeasures

Use parameterized queries:
PreparedStatement updateSales = con.prepareStatement(

"UPDATE COFFEES SET SALES = ? WHERE COF_NAME LIKE ?");

updateSales.setInt(1, 75);

updateSales.setString(2, "Colombian");

updateSales.executeUpdate();

(c) Copyright 2005 Denim Group, Ltd.

Buffer Overflows

Thankfully not typically a big deal in J2EE
environments
JNI code should be wrapped

Treat it as if you are crossing a trust boundary

(c) Copyright 2005 Denim Group, Ltd.

Command Injection
Watch out for System.execute() calls
Strip out potentially harmful shell control characters: `, ;, &, |, etc
Command separators:

Windows - &
UNIX - ;

If users are passing in filenames, disallow ‘.’ Characters so that ../
cannot be used to “escape” the base directory
Less of a need to escape these special characters as you might
have to do for SQL Injection or XSS situations

Not many applications actually accept those characters as legitimate
inputs
Instead strip them out or disallow sending tainted inputs to the
command

(c) Copyright 2005 Denim Group, Ltd.

Resources

OWASP www.owasp.org
WebGoat training tool
WebScarab penetration testing tool (proxy)
Discussion lists

@Stake (now Symantec) www.atstake.com
netcat TCP/IP tool
Whitepapers

(c) Copyright 2005 Denim Group, Ltd.

Questions

Dan Cornell
Denim Group, Ltd.
dan@denimgroup.com
www.denimgroup.com
(210) 572-4400

(c) Copyright 2005 Denim Group, Ltd.

Responses to Questions

There were two unanswered questions at
the end of the presentation

WebScarab and SSL
Netegrity and application security

(c) Copyright 2005 Denim Group, Ltd.

WebScarab and SSL

As it turns out, WebScarab does support
SSL
http://www.owasp.org/software/webscarab.html
“Proxy - observes traffic between the browser and the web server.
The WebScarab proxy is able to observe both HTTP and encrypted
HTTPS traffic, by negotiating an SSL connection between
WebScarab and the browser instead of simply connecting the
browser to the server and allowing an encrypted stream to pass
through it.”

(c) Copyright 2005 Denim Group, Ltd.

Netegrity

www.netegrity.com
Purchased by Computer Associates in
2004
Works with JAAS for authentication and
authorization in Java/J2EE environments

